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Introduction

The main event contributing to the pathogenesis of prion disease 
is the conversion of the cellular prion protein (PrPc) into scra-
pie prion protein (PrPsc), which is a protease-resistant, insoluble 
protein. PrPsc is the main component of transmissible amyloid 
deposits and is essential for progression of the disease.1,2 Prion 
infectivity can be explained by the direct PrPsc-PrPc interaction.3 
In vitro generation of infectious PrPsc has demonstrated the pro-
tein-only hypothesis of prion propagation, and the development 
of a method for the cyclic amplification of PrPsc has provided a 
highly sensitive assay for the biochemical detection of PrPsc in 
blood.4,5

Some reports have suggested a role of PrPc in antioxida-
tive defense and have demonstrated the involvement of PrPc in 
anti-apoptotic pathways.6,7 Moreover, the loss of PrPc leads to 
amyloid-β production in Alzheimer disease and controls neuro-
protective signaling.8 While it has been speculated that the loss of 
PrPc may contribute to the pathogenesis of prion disease, studies 
in PrPc-knockout mice have not supported this hypothesis, and 
the physiological function of PrPc is still unknown.9

Many reports have suggested that the multistep process of 
conversion from PrPc into PrPsc includes an oligomerization/
polymerization step.10,11 The oligomerization or molten-globule 
state is a preliminary step required for the formation of insoluble 
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protein in the brain, and soluble oligomers appear to be more 
cytotoxic than mature aggregates.12 The small size of PrPc oligo-
mers facilitates its efficient conversion to the protease k (PK)-
resistant form in vitro, which make up most of the components 
of PrPsc disaggregates that show infectivity.13 Therefore, both 
PrPsc and PrPc represent potential drug targets for the treatment 
of related diseases.

Many compounds have shown different efficacies toward the 
inhibition of aberrant self-assembly of PrPc, dissociation of exist-
ing aggregates, protection of cells against neurotoxic effects of the 
aggregates, and, in some cases, reduction of disease symptoms in 
vivo; however, there is no curative treatment for prion disease or 
for the progression of neuronal cell loss in the brain.

One potential therapeutic strategy is to interfere with the 
direct interaction between PrPc with PrPsc. The β-sheet breaker 
peptide, which is homologous to the PrP fragments implicated in 
the abnormal folding, has been shown to partially revert PrPsc to 
a biochemical and structural state similar to that of PrPc in vitro.14 
Recently, cationic tetrapyrrole compound has been shown to dis-
play activity toward PrP by binding to a folded domain of human 
PrP.15 An NMR study demonstrated a direct interaction between 
PrP and methylene blue on a surface cleft, including a fibrillo-
genetic region of the protein, and showed that this interaction 
affected the kinetics of PrP oligomerization, reducing the for-
mation of oligomers.16 Based on a structure-activity relationship 



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

www.landesbioscience.com	 Prion	 313

 Research paper research paper

remaining on the membrane before and after PK digestion of 
PrPc, detected as a signal from 3F4 antibody. Signals from the 
spots of PrPc (90–231) were decreased with increasing concentra-
tions of V-D

2
, indicating the V-D

2
 increased the susceptibility of 

PrPc (90–231) to PK (Fig. 3A). Similarly, increasing concentra-
tions of V-D

2
 also caused decreased signals for PrPc (101–130) 

(Fig. 3B). Calculation of the average pixel density of each spot 
demonstrated that the percentage decrease in the average pixel 
density was 70% for PrPc (90–231) and 85% for PrPc (101–130) 
when incubated with 30 μM V-D

2
.

Discussion

PrPc is a sialoglycoprotein with a molecular weight of approxi-
mately 33–35 kDa that is expressed predominantly in neurons. 
Studies have shown that fragments of PrPc exhibit a variety of dif-
ferent phenotypes. For example, PrPc (90–231), the N-terminal 
truncated fragment of PrPc, corresponds to the core of the 
PK-resistant prion protein, with similar pathogenic features as 
PrPsc.18,19

Gerstmann-Straussler-Sceinker disease and Creutzfeldt-
Jacob disease are well-known naturally occurring prion disease 
in human, which are caused by mutations in the PrP gene20,21 
and the mutations directly link to conformational conversion 
from PrPc to PrPsc and amplification of PrPsc without exogenous 
PrPsc.21,22 The N-terminal of PrP (90–231) is highly flexible, and 
the region of PrP (90–112) lacks defined secondary structure 
and is thought as a loop or hinge region, which contains natu-
rally occurring mutations region, and could be destabilized by 
mutations and induce the conformational transition and mul-
timerization of PrPc.23-26 A recent report provides the evidence 
that mutations between residues 101–112 play a critical role in 
enhancing multimerization and spontaneous aggregation of 
prion protein using phage-display system.27

The PrP (89–112) fragment has been also reported to selec-
tively bind to native PrPsc during prion infection, and the 3F4 
antibody could recognize the sequence.28 The PrPc (106–126) 
fragment is highly conserved among various species and is 
thought to be one of the key domains of PrP involved in amy-
loid formation.29,30 Moreover, PrPc (106–126) has similar physi-
cochemical and pathological properties as PrPsc, exhibits a high 
intrinsic ability to polymerize into amyloid-like fibrils, shows 
resistance to PK, and is neurotoxic in vitro.31 Another fragment, 
PrP (118–135), a putative transmembrane domain, induces apop-
totic neuronal cell death in rat cortical neurons independently of 
its aggregation.32

Thus, the N-terminal of PrP (90–231) is the therapeutic 
target in prion diseae. In the present study, we used the PrPc  
(101–130) fragment, which is completely preserved between 
human and hamster prion protein, and it contains the PrP  
(101–112) and a transmembrane domain.

We conducted Biacore assays to examine the binding of PrPc 
fragments with V-D

2
. Our data suggested a strong interaction 

between Hu-rPrPc (90–231) and V-D
2
, and presaturation of 

Hu-rPrPc (90–231) or PrPc (101–130) with the 3F4 antibody 
inhibited the binding of V-D

2
 to PrPc, indicating that the PrPc 

study for antiprion activity, researchers demonstrated that 
tocopherols inhibit prion replication and that this activity can 
be partially antagonized with rapamycin; these data suggest that 
signaling pathways of tochopherol targets may interfere with the 
actions of rapamycin, providing insight into PrP regulation and 
signaling.17

In the present study, we sought to identify novel compounds 
that may inhibit prion activity by screening hydrophobic vitamins 
for their ability to disrupt PrPc oligomerization. Our data dem-
onstrated that vitamin D

2
 (V-D

2
) showed a high binding affinity 

for the truncated form of human recombinant PrPc (90–231) and 
suppressed PrPc (90–231) oligomerization, resulting in increased 
susceptibility to PK. This is the first report to suggest the effects 
of V-D

2
 on the inhibition of PrPc oligomerization in vitro.

Results

Affinity of V-D
2
 for Hu-rPrPc (90–231), as measured by Biacore 

assay. A Biacore assay was employed to determine the affinity of 
V-D derivatives for Hu-rPrPc (90–231). A strong interaction was 
observed with V-D

2
, whereas V-D

3
 showed no interaction with 

PrPc (90–231) (Fig. 1A and B). From the sensorgram shown in 
Figure 1A, we found that the interaction exhibited a high bind-
ing affinity, with a KA of 6.17e8 and a KD of 1.62e-9. After satu-
rating PrPc (90–231) with the3F4 antibody, V-D

2
 binding to PrPc 

(90–231) was decreased, with a KA of 1.12e8 and a KD of 8.95e-9 
(Fig. 1C) (Table 1). The binding of PrPc (101–130) with V-D

2
 

was also decreased after saturating the fragment with the3F4 
antibody (Fig. 1D), indicating that within the 3F4 epitope, PrPc 
(90–231) was responsible for the interaction.

Reactivity of3F4 antibody with Hu-rPrPc (90–231) and 
PrPc (101–130) bound to V-D

2
, as monitored by ELISA. Next, 

we sought to confirm the responsible fragment within Hu-rPrPc 
(90–231) that was affected by V-D

2
. The reactivity of the 3F4 

antibody with PrPc (90–231) that was incubated with V-D
2
 at 

concentrations ranging from 0 to 45 μM was measured. The 
3F4 antibody showed decreasing reactivity toward PrPc (90–231) 
bound with V-D

2
 in a dose-dependent manner, and the sig-

nal almost reached zero at 30 μM V-D
2
. The reactivity of 3F4 

antibody was similar for PrPc (101–130) incubated with V-D
2
  

(Fig. 2A). In the case of this second fragment (101–130), V-D
2
 

reduced the signal by 30% at 15 μM and almost completely abol-
ished the signal at 30 μM. As a control, signals from theSAF70 
antibody against both PrPc (90–231) and PrPc (141–170) incu-
bated with V-D

2
 were not affected by the V-D

2
 concentration, 

and the signals were consistently high across all V-D
2
 concentra-

tions tested (Fig. 2B).
Effects of V-D derivatives on PrP oligomerization, as mea-

sured by dot blot assay. Next, we investigated whether V-D
2
 

could affect the hydrolytic activity of PK using artificial sub-
strates of serine proteases: Boc-Gln-Ala-Arg-MCA for trypsin, 
Glt-Ala-Ala-Phe-MCA for chymotrypsin, and Suc-Ala-Ala-Ala-
MCA for elastase. As expected, V-D

2
 did not affect the activ-

ity of PK toward these substrates (data not shown). Thus, we 
studied the effects of V-D

2
 on the formation of Hu-rPrPc  

(90–231) and PrPc (101–130) oligomers by measuring the protein 
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Figure 1. For figure legend, see page 315.
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strain and the rigidity of the double bond against rotation.44,45 
Therefore, we hypothesize that the conformational restriction 
arising from the presence of the double bond in the side chain of 
V-D

2
 facilitated the binding of V-D

2
 with the recognition site of 

PrPc (90–231).
Contemporary views categorize V-D as a prosteroid hor-

mone rather than a vitamin, and V-D has been shown to have 
immunomodulatory properties, affecting a reduction in pro- 
inflammatory immune pathways.46,47 Moreover, V-D has been 
shown to permeate the blood-brain barrier and to exert beneficial 
effects in disease progression, reducing the relapse risk in multiple 
sclerosis through its immunoregulatory effects.48 Therefore, our 
data demonstrating the role of V-D

2
 in the regulation of prion 

oligomerization have implications for the treatments of a variety 
of prion-related diseases.

In conclusion, our data suggested that V-D
2
 can bind directly 

with the region flanking the residues109–112 in prion protein, 
which could act as a loop or hinge region critical to PrP’s con-
formational transitions and multimerization. Therefore, V-D

2
, 

which is safe for consumption and administration in humans, 
may be useful for inhibiting the direct interaction between PrPc 
and PrPsc in clinical setting.

Materials and Methods

PrPc samples of Human recombinant PrPc (90–231)
(Hu-rPrP[90–231]) were obtained from Jena Bioscience (PR-
911), and synthetic peptides of PrPc (101–130), and PrPc (141–
170), both peptides correspond to human PrP sequences, were 
obtained from OPERON Biotechnologies. Monoclonal antibody 
(mAb) 3F4 specific for PrPc (109–112) fragment and mAb SAF70 
specific for PrPc (142–160) fragment were obtained from Sigma 
(P1115) and SPIbio (A03206) respectively. V-D derivatives, 
including V-D

2
 and V-D

3
, were from Cayman Chemical (11791, 

11792, 9000683, 71820), and other chemical compounds, 
including PK and phenylmethylsulfonyl fluoride (PMSF) were 
obtained from Nacalai Tesque (04130-06, 27327-81). The sub-
strate for ELISA detection, p-nitrophenyl phosphate, was from 
Sigma (N9389-50TAB). All PrP samples and V-D derivatives 
were dissolved in minimal amount of DMSO and diluted in Tris-
buffered saline (TBS; 20 mM Tris, 34 mM NaCl, pH 7.4) at the 
indicated concentrations.

sequence containing the 3F4 epitope was involved in binding to 
V-D

2
. The 3F4 epitope in PrP is a flexible region as a compo-

nent of the conformational rearrangement and it participates in 
the conformational changes from PrPc to PrPsc,33 and V-D

2
 could 

inhibit the changes. Additionally, our ELISA study supported 
the Biacore data, and PrPc (101–130), which possesses the 3F4 
epitope, contained the sequence required for the interaction with 
V-D

2
.

Several techniques to detect the presence of PrPc (90–231) 
oligomers have been proposed, and the most common technique 
is SDS-PAGE analysis followed by western blotting using anti-
PrP mAbs.34 The PrPc (90–231) oligomer is sensitive to SDS, and 
exposure to SDS causes dissociation of the oligomer, resulting in 
no detection of changes in oligomerization by western blot analy-
sis (data not shown). Therefore, in the present study, we employed 
dot blotanalysis because this method has allows for the evaluation 
of oligomer formation without SDS contamination in the sam-
ples. Our data indicated that the PK susceptibility of Hu-rPrPc 
(90–231) was increased by V-D

2
, suggesting that Hu-rPrPc  

(90–231) oligomers dissociated upon binding to V-D
2
. 

Furthermore, we are studying the potential effects of V-D
2
 to 

inhibit the conformational transition from α-helix to β-sheet of 
PrPc.

V-D is classified as a secosteroid and has 2 distinctive forms: 
V-D

2
 and V-D

3
. V-D

3
 is a 27-carbon molecule derivative of choles-

terol, and V-D
2
 is a 28-carbon molecule derived from plant sterol 

ergosterol that contains a double bond between carbons 22 and 
23. Due to its cis-triene structure, V-D is susceptible to oxidation, 
UV light-induced conformational changes, heat-induced confor-
mational changes, and attack by free radicals.35 V-D

2
 and V-D

3
 

appear to have similar biological effects in humans, and V-D
3
 is 

about 4 times as potent as V-D
2
.36-38 However, we observed dif-

ferences in the interactions of V-D
2
 and V-D

3
 with PrPc (90–231). 

Interestingly, V-D
2
 showed higher affinity for Hu-rPrPc (90–231), 

while V-D
3
 showed no affinity for this fragment.

Interestingly, V-D
2
 is manufactured by exposing a fat extract 

of yeast to UV light, and no metabolites of V-D
2
 are normally 

detectable in the blood of humans or primates, unless adminis-
tered from an external source.38,39 Thus, V-D

2
 is not a physiologi-

cal product and is instead regarded as a drug; the metabolites 
generated for V-D

2
 are not equivalent to those for V-D

3
.40 In con-

trast to V-D
2
, V-D

3
 is the natural metabolite generated within 

the skin and oils of fur, and V-D
3
 is a substrate for both micro-

somal and mitochondrial 25-hydroxylases, which do not act on 
V-D

2
.39,41,42 Furthermore, the V-D binding protein shows lower 

affinity for V-D
2
 than V-D

3
 and its metabolites.43

The only structural difference between V-D
2
 and V-D

3
 is the 

presence or absence of the C24 methyl group and C22–C23 
double bond in the side chains. In general, the presence of a 
double bond in a linear structure is known to have an influence 
on the conformational flexibility of the molecule through allylic 

Figure 1 (See previous page). Affinity of V-D to PrP, as measured using the Biacore system. (A) The interaction between PrPc (90–231) and V-D2 
showed high binding. (B) The interaction between PrPc (90–231) and V-D3 showed no binding affinity. (C) The interaction between PrPc (90–231) and 
V-D2, after saturating with the3F4 mAb. (D) The interaction between PrPc (101–130) and V-D2, after saturating with the 3F4 mAb. Experiments were 
performed at least 3 times and similar results were obtained. The figures express the representative results of the experiments.

Table 1. Binding kinetics of V-D2 and V-D3 to Hu-rPrP(90–231)

Ligand Anaylte KA(1/M) KD(M)

V-D2 6.17e8 1.62e−9

PrP(90–231) 3F4 + V-D2 1.12e8 8.95e−9

V-D3 ND* ND*

*ND, not detected.
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the indicated concentrations (0, 5, 15, 30, or 45 μM) for another 
12 h at 37 °C. After removal of the V-D derivative solution, the 
wells were incubated with TBS containing 3% bovine serum 
albumin (BSA), pH 7.4, overnight at 4 °C, washed with TBST 
(TBS containing 0.05% Tween-20, pH 7.4), and incubated for 
an additional 2 h at 37 °C with 50 μL of one of several mAbs 
against PrPc (1:1000 dilution) in TBS containing 1% BSA (pH 
7.4) as the primary antibody. After incubation, the wells were 
washed with TBST and incubated for 1 h at 37 °C with 50 μL 
anti-mouse IgG-AP (Promega, S372B) as the secondary antibody. 
After incubation, the wells were washed with TBST, and bound 
antibody was detected by addition of p-nitrophenyl phosphate 
and measured at 405 nm using a spectrophotometric plate reader 
(Molecular Device, model 680) after several hours, depending on 
the titer of each mAbs. All washing steps were performed 3 times.

Dot blot assay. Hu-rPrPc (90–231) or PrPc (101–130)  
(8 μg/mL) were mixed with V-D

2
 at the indicated concentra-

tions (0, 5, 15, or 30 μM) for 12 h at 37 °C in Eppendorf tubes. 
Then, 100 μL of each suspension was applied to a DP48 dot plate 
(Advantec, FLE 348AA) and blotted onto a methanol-immersed 
polyvinylidene difluoride (PVDF) membrane (0.2 μm; Life 
Technologies, LC2002) with absorption by vacuum pump. The 
PVDF membrane was then removed, thoroughly air-dried, and 
rinsed in TBS. The PVDF membrane was incubated with 5 mL 
PK solution (8 μg/mL in TBS, pH 7.4) for 90 min at 37 °C with 
constant shaking. After removal of the PK solution, the reaction 
was stopped by washing the membrane with TBS followed by 
incubation with 3 mM PMSF at room temperature for 30 min 
and rinsing twice with TBS. The membrane was subsequently 
processed as a standard western blot using 3F4 mAb as a primary 
antibody and anti-mouse IgG-HRP (GE Healthcare, NA931V) 
as a secondary antibody to detect the protein remaining after PK 

Biacore analysis. We used a surface plasmon resonance 
(SPR)-based Biacore 3000 system (GE Healthcare) to analyze 
the molecular interactions between PrPc and V-D derivatives.49 
The Hu-rPrPc (90–231) fragment (200 μg/mL) was covalently 
linked to a sensor chip CM5 (carboxymethylated dextran sur-
face) (BR-1003-99) through the use of amine-coupling chemis-
try.50 Solutions of V-D derivatives were injected over the surface at  
25 °C with a flow rate of 20 μL/min in HBS running buffer  
(10 mM Hepes, pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% 
[v/v] surfactant P20). After injection, analyte solutions were 
replaced by HBS at a continuous flow rate of 20 μL/min. Surface 
regeneration was accomplished by injecting 10 mM glycine-HCl 
(pH 1.5; 1 min contact time). All analyte solutions were run 
simultaneously over a control flow cell containing a blank surface 
(with no immobilized protein). Each sensorgram (time course 
of the SPR signal) was subtracted for the response observed in 
the control flow cell and normalized to a baseline of 0 resonance 
units. To determine the stoichiometry of the interaction between 
Hu-rPrPc (90–231) and V-D derivatives, various concentrations 
(20, 50, 100, 150, and 200 μM) of V-D derivatives were passed 
for 3 min over the sensor chip with immobilized Hu-rPrPc (90–
231) with 60-μL injections at a flow rate of 20 μL/min to obtain 
a saturating response. Kinetic data were interpreted with a simple 
1:1 binding model, and interaction rate constants were calculated 
using BIAevaluation 4.1 SPR Kinetics software (GE Healthcare). 
We also studied the interactions of Hu-rPrPc (90–231) and PrPc 
(101–130) with V-D

2
 after achieving a saturating response for 3F4 

at 2 μg/mL with 60-μL injections at a flow rate of 20 μL/min.
ELISA. Microplate wells were coated with 50 μL of Hu- rPrPc 

(90–231), PrPc (101–130), or PrPc (141–170), at the concentration 
of 8 μg/mL, overnight at 4 °C. After removal of excess sample, the 
sample in each well was incubated with 50 μL V-D

2
 or V-D

3
 at 

Figure 2. Reactivity of mAbs against PrPc with V-D2 by ELISA. (A) The 3F4 epitope on PrPc was affected by V-D2 in a dose-dependent manner. The blue 
line indicates signals for Hu-rPrPc (90–231), and the red line indicates signals for PrPc (101–130). (B) The SAF70 epitope on PrPc was not affected by V-D2. 
The blue line indicates signals for Hu-rPrPc (90–231), and the green line indicates signals for PrPc (141–170). Each experiment was performed 3 times 
by triplicates, and the values express means ± SD *p < 0.006, **p < 0.003 vs. PrPc (101–130) without V-D2, †p < 0.005, ††p < 0.01, †††p < 0.05 vs. Hu-rPrPc 
(90–231) without V-D2.
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Figure 3. Sensitivity of PrPc to protease K following incubation with V-D2. V-D2 increased the sensitivity of Hu-rPrPc (90–231) (A) and PrPc (101–130) (B) to 
PK in a dose-dependent manner. The average pixel density of each spot was measured by NIH image analysis after subtracting the mean background 
pixel density from that of the test spots. Experiments were performed 3 times by duplicates, and the representative results were expressed. Values are 
means ± SD of three experiments. *p < 0.05, **p < 0.02, ***p < 0.01 vs. Hu-rPrPc (90–231) or PrPc (101–130) with PK in the absence of V-D2.
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